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Peta-scale Data Storage: Our 
Goals
Performance

20 PB storage system
1-10,000 hard drives

1 TB/sec aggregate 
throughput

1-10,000 hard drives 
pumping out data as fast as 
they can

Billions of files
Bytes to terabytes
1-100,000+ files/directory

Very low-latency metadata

Usage
POSIX-like interface

Standard file/directory 
semantics

High-performance direct 
access from 100,000+ 
clients, to

Different directories, same 
directory, same file

Mid-performance local 
access by visualization 
workstations w/QoS
Wide-area general-purpose 
access



Peta-scale Data Storage 
Challenges

Massive scale of everything
Huge files, directories, data 
transfers, etc.

Managing the data
Coordinating the activity of 
thousands of disks

Managing the metadata
Unified directory hierarchy

Workload
Scientific and general 
purpose workloads

Dynamic capacity
Must be able to grow (or 
shrink) dynamically

Reliability
Thousands of hard drives 
⇒ frequent failures

Security
Authentication, encryption, 
etc.

Performance
Hot spot avoidance
Many possible bottlenecks

Quality of Service
Guaranteed performance 
with mixed workloads

Usability
Finding anything among all 
of that data
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Block I/O Manager

Object Interface
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File System
Client Component

File System 
Storage Component

Applications
Applications

System Call Interface

Logical Block Interface

Block I/O Manager

File System

Traditional Storage Object-based 
Storage�

Operating
System

Hard
Drive

Operating
System

Object-
based
Storage
Device
(OSD)

First Key Idea: Object-based 
Storage



Block I/O Manager

Object Interface

System Call Interface

File System
Client Component

File System 
Data Manager

Applications

Operating
System

Object-
based
Storage
Device
(OSD)

Metadata Interface

File System 
Metadata ManagerMetadata

Server
(MDS)

Metadata
requests

Data
requests

Metadata
storage

Metadata storage
and/or system
management

Second Key Idea: Decoupled 
Data and Metadata



Peta-scale Object-based 
Storage System Architecture

Cluster of Metadata 
Servers (1–10)

Clients 
(10,000+)

Object-
based 
Storage 
Devices (1–
10,000)
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Ceph Goals
Reliable, high-performance distributed file system 
with unprecedented scalability

POSIX-like interface
Petabytes to exabytes, multi-terabyte files, billions of files
Hundreds of thousands of clients simultaneously accessing 
same files or directories

Object-based storage promises scalability, but has 
largely failed to deliver due to continued reliance on 
traditional storage systems principles

Inode tables
Block (or object) list allocation metadata
Unintelligent storage devices



Four Key Design Principles

1. Separation of data and metadata

2. Pseudo-random data placement

3. Robust distributed object storage

4. Dynamic distributed metadata 
management



Overview
Client operation

System overview, extending POSIX
CRUSH – pseudo-random data placement
DSP – distributed metadata

Traffic management, storage
RADOS – reliable, distributed object storage

Intelligent OSDs, specialized local object storage
EBOFS – high-performance object storage
Evaluation



Client Operation
Clients expose Ceph interface to a process or host

Near-POSIX: we extend the interface and selectively relax 
consistency semantics
Can link to a single process or mount (via FUSE)

Decoupled data and metadata operations

Metadata
storage

File I/O

Metadata Cluster

Object Storage Cluster

clientbash

Linux kernel
fusevfs

libfusels

…

myproc

client

Clients

Metadata operations



Client Operation (cont.)
Client sends open request to MDS

Receives a capability, granting client permission to read 
or write to objects comprising file
Also receives inode number, striping information

Client reads/writes directly to OSDs
Maps file contents onto objects based on striping strategy
Generates object names using inode and object number
Calculates object locations using CRUSH function

…
…

… … … …

CRUSH(pgid)      (osd1, osd2)

OSDs
(grouped by 
failure domain)

File

Objects
hash(oid) & mask      pgid

PGs

(ino,ono)      oid



Extending POSIX—
Lazy I/O

Mixed readers/writer or multiple writers shifts clients 
to synchronous I/O mode

Updates serialized at OSDs for proper semantics
Increases latency—can kill performance!

Ceph implements subset of proposed HPC I/O 
extension

O_LAZY option for open() relaxes consistency when 
applications opt to manage it themselves
lazyio_propogate(), lazyio_synchronize() allow application 
to force updates to be visible to others

Retains simplicity and enables high-performance 
without breaking consistency system-wide (as NFS3 
does)



Extending POSIX—
readdir() + stat()

Common, and slow—typically involves many 
lookups in inode table
Ceph MDS embeds inodes in directories

A single OSD access fetches directory contents and inodes
into MDS cache
A client readdir() retrieves directory entries and inode
contents with a single request to an MDS

readdirplus() system call provides applications with 
appropriate semantics

Or, Ceph can relax consistency for a stat() immediately 
following a readdir()



CRUSH—
Robust Data Distribution

Controlled Replication Under Scalable 
Hashing

Pseudo-random replica distribution algorithm 
No allocation metadata (no lookups in data path!)
Efficiently reorganizes data when the cluster 
changes due to addition or removal of storage
Enforces flexible constraints on replica distribution 
to enhance reliability – failure domains



CRUSH is a function

CRUSH maps an integer identifier x to an ordered list of storage targets
No lookup tables
No block or object lists associated with each file

x is just an integer – we use psid ← hash(object_id) & mak
Pseudo-random – looks random, but deterministic!

Implicit inputs include
A hierarchical cluster map describing available storage devices
A placement rule describing any constraints on object placement

How many replicas
Separation of replicas across failure domains

Everybody has the cluster map and placement rules
Calculate object locations instead of looking them up

CRUSH(x) → (osd4, osd21, osd13)



CRUSH maximizes reliability,
minimizes data migration

Cluster map represents OSDs as a hierarchy that 
reflects arbitrary physical or logical structure

Shelves, cabinets, rows, rooms, buildings
Power supplies, networks, racks
Performance, reliability, …

Placement rules define replica placement behavior
e.g. 3 replicas, in same row, but each in a different cabinet

CRUSH mapping is stable
When disks are added, removed, or fail, CRUSH minimizes 
the amount of data that migrates to maintain balance 



DSP: Dynamic Distributed 
Metadata Management 

Dynamic Subtree Partitioning
Workload Partitioning

Distribute MDS workload
Traffic Management

Coping with hot spots
Directing client traffic

Metadata Storage
Fast commits and efficient reads
Data safety and MDS failure recovery



Traditional Partitioning

Coarse distribution (static subtree partitioning)
hierarchical partition preserves locality
high management overhead: distribution becomes imbalanced as 
file system, workload change

Finer distribution (hash-based partitioning)
probabilistically less vulnerable to “hot spots,” workload change
destroys locality (ignores underlying hierarchical structure)

Directory Hashing
Hash on directory 
portion of path only

Coarse partition Fine partition

Static Subtree Partitioning
Portions of file hierarchy 
are statically assigned 
to MDS nodes 

(NFS, AFS, etc.)

File Hashing
Metadata distributed 
based on hash of full path 
(or inode #)



Ceph’s Dynamic Partitioning

Distribute subtrees of directory hierarchy
Somewhat coarse distribution of variably-sized subtrees
Preserve locality within branches of the directory hierarchy

Intelligently manage distribution based on workload demands
Keep MDS cluster load balanced
Actively repartition as workload and file system change instead of 
relying on a (fixed) probabilistic distribution

Coarse partition

Static Subtree Directory Hashing File HashingDynamic Subtree Partitioning

Fine partition



Metadata Partition

Subtrees are dynamically redistributed to balance workload
Granularity ranges from large subtrees to individual directories
Coarse partition preserves locality, improves efficiency

Ceph adapts to hotspots in workload
Heavily read directories are replicated on multiple MDSs
Heavily written directories are hashed across the entire cluster

Root

MDS 0 MDS 4MDS 1 MDS 2 MDS 3

Busy directory hashed across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4



Metadata Storage—
Two Tiers

Short-term storage in metadata journal
Immediate commits require high sequential write bandwidth
Very large journal with extremely lazy commits
Absorbs short-lived or repetitive metadata updates
Used for recovery after MDS failures

Long-term storage
On-disk layout optimized for future read access
Inodes embedded in directories—no large, awkward inode tables

MDS 3MDS 2MDS 1

MDS
Cache

Long-term Storage
(Shared Access)Clients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads



RADOS—Reliable Autonomic
Distributed Object Store

OSDs self-managing, distribute
replication
failure detection (refereed by third party)
failure recovery
data migration

Single object namespace
Individual OSDs store different objects, but
Cluster collectively acts and appears as a single, 
reliable, self-managing distributed store



RADOS –
Replication

Clients send reads, writes to first OSD
Reads are satisfied locally

or delegated to replicas for fine-grained load balancing

Writes are forwarded to replica sites
Ack’ed only after replicas ack
Leverages local OSD interconnect, intelligence

write

ack

Client OSDs



RADOS –
Synchronization vs Safety

Two reasons we write data to the object store
Synchronization – so other clients can see it

Must be fast – maintain consistency and coherency without killing performance
Safety – data on disk survives power failures, etc.

Must be reliable – either assumed, or often because the application asks for it with fsync()
RADOS disassociates write ack and safe replies

Client receives quick ack when write is received by object store and applied to replica 
buffer cache(s)
A second safe follows (seconds?) later when data is safe on disk

write

ack

safe

Client OSDsMDS



RADOS –
Failure Detection

OSD Failure detection is distributed
Each OSD monitors a subset of its peers via ping or 
heartbeat messages
Piggybacks on existing inter-OSD replication chatter when 
possible
Failure reports sent to third party referee (MDS)

Referee confirms failures
Filters out bogus reports, spurious connectivity failures, 
partitions, etc.
Distributes new cluster map with new OSD state decrees
Operations pending with newly-failed devices are rerouted



RADOS –
Failure Recovery

OSDs scan their current PGs
Any “stray” data in affected PGs is announced to the PG’s 
new primary OSD
Primary collects PG content summaries (object lists) and 
distributes to all replica OSDs
Each OSD, armed with “correct” PG contents, will 
independently retrieve any object replicas it is missing

Normal workload is mostly unaffected
Recovery proceeds in the background
Updates to non-replicated data currently block while OSDs
replicate underlying objects



EBOFS –
Low-level object storage

Extent/BTree-based Object File System
Extent-based allocation—(start,length) instead of 
block lists
Robust generalized BTree storage service

Object onode table
Collections (placement groups) 
Free extent lists, indexed by size, position

Attributes – on objects and collections
Safety – efficient copy-on-write for data and 
metadata



EBOFS—
Not a typical file-system!

Non-standard transaction semantics (for RADOS)
Atomic compound transactions—data + metadata updates

Multiple writes, attribute or collection membership updates
Asynchronous (“safe”) notification of disk sync

User-space implementation
We define our own interface

not limited by existing (and ill-suited) kernel POSIX 
interface, Linux page cache, etc.

Superior performance compared to general-purpose kernel 
filesystems (ext3, xfs, etc)



EBOFS –
Emphasis on Safety

Two copies (even and odd) of superblock
Alternating updates
Point to BTrees containing all metadata

Copy-on-write – all writes are to unallocated space
Modified BTree nodes written to unused blocks
Modified data written to unallocated space

Commit cycle every second or so
Dirty object data, BTree data flushed to disk
New superblock written
Asynchronous update commit callbacks triggered
Journaling soon?
Non-blocking—no effect on disk workload

Any power failure returns EBOFS volume to fully consistent state – no 
fsck



OSD Performance—
EBOFS vs ext3, XFS, ReiserFS
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EBOFS writes saturate disk

Reads approach optimal when data is written in large 
increments



OSD Performance—
Throughput w/Replication

Little per-OSD impact

Proportional decrease in overall throughput (not seen here)



OSD Performance—
Write Latency w/Replication

Tolerable increase in latency w/replication

Little extra cost for 3+x replication (performed concurrently)



OSD Cluster Scaling—
CRUSH vs careful striping

OSD Cluster Size
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Metadata Scalability—
Throughput vs. Cluster Size

MDS Cluster Size (nodes)
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Over 250,000 metadata ops/second!

Potentially many terabytes/second, petabytes to exabytes!



Metadata Scalability—
Latency vs. Cluster Size

Good latency until saturation

Larger cluster saturates at somewhat lower per-MDS workloads 
due to between-MDS communications



Conclusions
Reliable, high-performance storage with 
unprecedented scalability

Very soon: 
http://sourceforge.net/projects/ceph

Help us build one (or more)!



Future Work
Ceph QoS architecture

Distributed reservations and performance guarantees
Archival storage

Managing data hot spots, idle data
Rich metadata

Our MDS built around 30-year old POSIX file system interface
Next generation file systems will likely diverge from a single 
hierarchy

In-flight data management
Better awareness (and exploitation) of data residing in transit or 
in client caches
Leverage existing object-based interface and replica 
synchronization techniques

Enhanced Interfaces (maybe not us)
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